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Summary. The effectiveness and usefulness of the so-called high-order neural 
networks for classification of chemical objects is demonstrated. The high-order 
neural networks usually do not need hidden neurons for correct interpretation of 
patterns. A simple formula for partial derivatives of the minimized objective 
(error) function is derived, which is used for production of weight coefficients 
during the adaptation process. An illustrative example dealing with inductive and 
resonance effects of functional groups by the second-order neural network is 
presented. 
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1 Introduction 

The paradigm of neural networks [1-3] offers new mathematical tools equipped 
with learning features, which are able to classify patterns of quite diverse nature. 
In particular, applications of neural networks in chemistry [4, 5] are well 
illustrated by effective correlations between molecular structure and activity. 
Neural networks can be also used like "expert systems" that are able to classify 
molecules by their structural fragments or special properties. Usually, these 
applications are carried out by standard feed-forward neural networks adapted 
by the back-propagation method [6]. 

The purpose of the present communication is to demonstrate an extension of 
the neural network approach towards the so-called high-order neural networks. 
These neural networks are able to capture higher-order correlations between 
neurons and thus they usually offer considerably enhanced performance in 
adaptation and generalization processes. Moreover, knowledge determining "ex- 
pert rules" can be deduced crafting networks to reflect complex informational 
structures. 

Minsky and Papert [7] studied two-layer neural networks (perceptrons) of all 
orders and they concluded that high-order perceptrons are impractical due to the 
exponential explosion of the number of high-order weight coefficients, and that 
the first-order perceptrons are limited only to linearly separable patterns. Since 
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most problems of real interest are not linearly separable, this is very serious 
limitation of two layer first-order neural networks. A way how to overcome this 
limitation is to introduce additional layers that are composed of the so-called 
hidden neurons [6]. The principal meaning of hidden neurons consists in the fact 
that they create an internal representation of input patterns, which is linearly 
separable by output neurons. Such an extension of the neural-network approach 
involves an adaptation rule for the hidden neurons, which was successfully 
accomplished by Rumelhart et al. [6] by the so-called back-propagation method. 
Unfortunately, this adaptation method for hidden neurons is often very slow, it 
requires thousands of iterations to converge and sometimes does not converge at 
all, due to the local minimum problem. The above problems can be surmounted 
by using high-order terms [6-9], which are to some extent equivalent to 
previously specified hidden neurons. In an ideal case, all hidden neurons may be 
substituted by considering the high-order weight coefficients. Then all patterns 
from the training set are correctly classified by a simple two-layer neural network 
that contains these high-order terms. 

The effectiveness and usefulness of high-order neural networks will be 
illustrated by their application for classification and prediction of  inductive and 
resonance effects (represented by sigma constants) of functional groups. These 
parameters, initially introduced in physical organic chemistry [10], offer very 
important tools to describe an influence of functional groups on reactivity of 
synthons [11-13] (reaction cores). The input information to the neural network 
should properly represent the topology and basic physical parameters of the 
functional groups. So we chose simple descriptors [14, 15] as frequencies of 
appearance of  special labeled rooted subgraphs in the functional groups. As a 
consequence, the functional groups are described by graph-theoretical parame- 
ters and the calculation of  additional physical or physico-chemical parameters of  
functional groups is avoided. The obtained results are very encouraging and 
support common chemical beliefs that the properties of molecular systems are 
mainly determined by structural formulae. Moreover, the fact that the applica- 
tion was successfully performed entirely by two-layer neural networks is poten- 
tially very encouraging for further applications of  neural networks to the 
classification and prediction of  the chemical reactivity problem based purely on 
simple molecular descriptors reflecting in some "additive" manner the structural 
formulae. 

2 Theory 

A feed-forward neural network [3] may be formally determined as an oriented 
graph [16], G = (V, E), where the set V =  {vl, v2 . . . . .  VN} is composed of N 
neurons and the set E = {el, e2 . . . .  , eM } is composed of  M connections. Each 
connection e ~ E is interpreted as an ordered pair of neurons from V, e = [v, v']; 
we say that the connection e is outgoing from the neuron v and incoming to the 
neuron v'. The subset F(v) ~_ V is composed of all neurons (called the successors 
of v) that are adjacent to v by connections outgoing from v. Analogously, 
F - I ( v )  ___ V is composed of all neurons (called the predecessors of v) that are 
adjacent to v by connections incoming to v. The neuron set V is divided into 
three disjoint subsets, V = Vlw V~ w Vo, where the subsets are called input, 
hidden, and output, respectively. The input neurons are incident only with 
outgoing connections, VI = [Vv ~ V: Ir( )l > 0 and [F-~(v)l = 0}, the hidden 



Application of high-order neural networks in chemistry 259 

neurons are incident at least with one incoming connection and one outgoing 
connection, V~r = {Vv e V: IF(v)] > 0 and ]F-l(v)] > 0}, and finally, the output 
neurons are incident at least with one incoming connection, 
V0 = {Vv ~ V: ]F-l(v)l > 0}. For  standard (first-order) neural networks the activ- 
ities of hidden and output neurons are determined by: 

x~ =f({~), ( la)  

~; O ~ + ~  ~ ( lb)  = (.Oj Xj ,  
J 

where the summation runs over all indices j from the set F-~(i), i.e. over all 
predecessors of  the neuron indexed by i. The entries 0~ and coj are threshold and 
weight coefficients assigned to the vertex v, and the connection [vj, v,-], respec- 
tively. The transfer function f ({)  is a monotonously increasing function that 
fulfills the asymptotic conditions f ({)  + B as { ~ m and f ({)  ~ A as { ~ - m, 
where A ~< 0 < B. For  instance, these requirements are simply met if the transfer 
function is: 

B + A exp( - 4) 
f ({)  - , (2a) 

1 + exp( - ~) 

with the first derivative determined by: 

[f(~) -- Al[f(~) -- B] 
f ' (~)  = (2b) 

A - B  

Most frequently, the transfer function is usually applied either for A = 0, B = 1 
or for A = - 1, B = 1. The first case corresponds to classical sigmoidal function 
and the second case corresponds to an analog of  hyperbolic tangent function. 

A possibility of how to generalize the concept of feed-forward neural 
networks is to enlarge the basic formula of  Eq. (1) so that its argument will 
account for not only constant (threshold coefficient) and linear terms (sum of  
weighted activities) but also quadratic, cubic . . . .  terms. This means that the 
activities are determined as followed [9]. 

x, =f (~ , ) ,  (3a) 

cojkxjx k + ' " ,  (3b) 
j j<~k 

where the second summation runs over all pairs j, k e F -  ~(i) restricted by j ~< k, 
etc. The entities O}k . . . .  are weight coefficients assigned to pairs of connections 

i will denote a weight that are incoming to the same neuron. The term cn~ 
coefficient assigned to connections that are incoming to the neuron i and 
outgoing from neurons with the composite index a = (j,  k . . . .  ) constrained by 
j ~< k ~< • • •. If  the above formula contains at most quadratic terms, then the 
network is called second-order; the highest order terms in (3b)determines the 
order of a neural network. 

A supervised adaptation process [3] of  high-order neural networks entails 
looking for threshold and weight coefficients that give for a pair of prescribed 
input and output activity vectors xz and 2o an output vector Xo = F(xz), where F 
is a mapping realized by the neural network, and the vector Xo should be 
"closely" related to the prescribed (required) output activities vector 20. Let us 
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introduce an objective function: 

E = ½(Xo - 20) 2 = ½~ g~, (4a) 
k 

{ ~  k - f c k ) ' ( f ° r k e V ° )  (4b) 
gk= , ( forkCVo)  

where Xk and 2 k are entries of x 0 and 2o, respectively. A goal of adaptation 
processes is to find threshold and weight coefficients that will minimize the 
objective function E. 

This minimization may be carried out by a gradient method [17], e.g., most 
simply by the steepest descent method [17, 3]. For the implementation of this 
method we have to know all partial derivatives OE/3O i and dE/Oo9~ of the 
objective function with respect to the threshold and weight coefficients. These 
partial derivatives may be expressed as: 

dE dE dxi 
0 0 ; -  dxgd0g ~g.f'(¢g)' (5a) 

dE dE dx i dE , 
&o~ - dxg &o~ - ~x,. f (~g) .1~ xj. (5b) 

j~c~ 

Comparing these two equations we arrive at the basic relationship between 
partial derivatives dE~dOg and dE/do~: 

aE dE 
-- ~iij~x Xj. (6) 

Then the whole process of calculation of partial derivatives dE~dOg and dE/&9~ 
may be reduced to the substantially simpler calculation of dE~dOg. Two-, 
three-,.., index derivatives OE/&o~ are determined by one-index derivatives 
dE~dOg and a product of activities xj with indices taken from the composite index 
c~. The partial derivatives dE/dxg from the right-hand side of (5) are expressed as 
follows: 

dE _ dE dxi y ,  dE dxt 
dx~ dxg dxg + ~z'dr( t 0 dxt dx~ 

dE , ~ d~l 
=gi'-[- Z ~ - f (  l ) ~ -  

l e c(i) OXl OXi 

= gi -[- ~ ,  d E  d¢l 
l =~ti) -~l dxg 

(D ikXk -~- 2 1 gg + + Z ' + . -  . , ( 7 )  
let(i)  k~ i  k~ i  

where, for simplicity, we have displayed only the terms up to the second order. 
The higher-order terms are slightly more complex. Introducing this result in Eq. 
(5a) we arrive at the final formula for partial derivatives dE/Odg: 

= f  (~i)lgi + ' Z i ) "~"  ~ 0~] + k>~12 O)~kXk "q" k~i2 (O~iXk "q-" " " ' ( 8 )  

for i e Vtz u Vo. For the feed-forward neural networks Eq. (8) allows a simple 
recurrent calculation (called back-propagation method [31) of the partial deriva- 
tives dE/d~g. This calculation starts for output neurons that are incident merely 
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with incoming lines (for the feed-forward neural networks there exists at least 
one such a neuron), we put OE/Ogi =f'(~;)g;.  Continuing this process for 
neurons that are predecessors of the neurons considered in the previous step, the 
partial derivatives 3E/30i are simply calculated by Eq. (8). Finally, the weight 
coefficients co / are calculated according to Eq. (6). 

The above method of calculation of partial derivatives may be simply 
generalized for more than one pair of input-output vectors xx and 2o: 

X(1)/~.(1) v. (2) / ~¢. (2) ~(r)/~.(r) ± /~0 , ~ i  /-,,,o , . - . , ~ z  /~0 , (9) 

which form the so-called training set. The objective function is then determined 
by: 

E = ~ E (°, (10a) 
i = 1  

E(o ~_¢x(O __  2 ( i ) ~  2 =2 t  o o J , (10b) 

where x(0 ° is the output vector of the neural network determined by (6) as a 
response to an input vector x(] ), and 2~ ) are required output vectors assigned to 
input vectors x(/). Partial derivatives of the generalized objective function are 
then equal to the sum of the partial derivatives of E (° evaluated by Eqs. (6) and 
(8). 

If  we know the gradient of the objective function, then the adaptation 
process of a neural network is realized by a minimization of the objective 
function of Eq. (10) with respect to threshold and weight coefficients. The 
steepest-descent minimization method accelerated by the so-called momentum 
method [3] is based on the following updating of threshold and weight co- 
efficients: 

0E 
O)/(k + 1) : (.O/(k) - -  ~ ~0)~  -]- ~ Ao)/(k)  ( l l a )  

#E 
0 ~ k +  1) = 0~k) _ )[ ~ / /  + p A ~ k )  (1 lb) 

where the positive parameters 2 > 0 should be both sufficiently small to ensure 
the convergence of the adaptation process and sufficiently large to achieve fast 
convergence. The momentum parameter kt is taken from the semiopen interval 
(0, 1], usually # = 0.7-0.9. Finally, the terms Aco~ (k) and A0! k) correspond to the 
previous changes of weight and threshold coefficients, respectively. 

3 Simple illustrative example 

We have described an adaptation process, which could, in principle, determine 
the threshold and weight coefficients that minimize the objective function E of 
the higher-order neural network. For simplicity we restrict ourselves to the 
third-order neural network in which only "off-diagonal" weight coefficients 

i COjkm, J < k < m, are considered. For input patterns determined by 0-1 digits the 
"diagonal" terms co~jj are irrelevant according to the property x 3 = x, for x = 0 
or x = 1. These third-order neural networks will be illustrated by a simple 
example of summation of three 1-digit binary numbers. In the example, when the 
first-order neural networks are used, the hidden neurons should be used [3] to 
achieve the proper classification of input patterns. 
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3.1 Summation of three I-digit binary numbers 

Let us study an application of the third-order neural network approach to the 
summation of three 1-digit binary numbers, schematically: 

Xl + x2 + x3 = XgXs, (12) 

where xi's are binary 0-1 numbers. All possible eight different cases are 
displayed in the following table: 

No. xl x2 x3 x4 x5 Meaning 

1 o o o o o o + o + o = o  
2 0 0 1 0 1 0 + 0 + 1 = 1  
3 0 1 0 0 1 0 + 1 + 0 = 1  
4 0 1 1 1 0 0 + 1 + 1 = 2  (13) 
5 1 0 0 0 1 1 + 0 + 0 = 1  
6 1 0 1 1 0 1 + 0 + 1 = 2  
7 1 1 0 1 0 1 + 1 + 0 = 2  
8 1 1 1 1 1 1 + 1 + 1 = 3  

Theconsidered  n e u r a l n e t w o r k i s c o m p o s e d  o f t h r e e i n p u t n e u r o n s ( w i t h  
activities Xl, x2, X3) , two output neurons (with activities x4, xs), and no hidden 
neurons. All input and output neurons are connected by oriented connections 
outgoing from input neurons and incoming to output neurons. According to the 
commutation rule of all entries in the summation of Eq. (12) the input neurons 
should be symmetric. This means that the weight coefficients should be restricted 
by: 

co~=a~ 2i- i_~3, ~o~2=co~3=~3, (14) 

for i = 4, 5. The potential 4; assigned to an output neuron vi is determined in the 
framework of third-order neural-network approach as: 

~i(Xl, X2, X3) = 0 i + (D~(X 1 + X 2 + X3) + (D~2(XlX2 + XlX 3 + X2X3) 

+ (D~23XlX2X 3. (15) 

If the input activities are taken from the table (13), then we arrive at two systems 
of inequalities, which determine the threshold and weight coefficients of output 
neurons: 

44(0, 0, 0) = 04 < 0, 
44(1, 0, 0) = 04 + (394 < 0, (16a) 
44(1, 1, 0) = 04+20)4+0942  > 0 ,  
44(1, l, l)  = 04 + 3(3) 4 + 3~o42 + co423 > 0, 

and 

45(0, 0, 0) = 05 < 0, 
45(1, 0, 0) = 05 + co~ > 0, 
45(1, 1, 0) = 05 + 2co~ + co~2 < 0, 
45(1, 1, 1) = 05 + 3co~ + 3co~2 + ~o1523 > 0. 

(16b) 

The right-hand sides of these inequalities may be formally identified with 
auxiliary positive constants (i.e. the inequalities (16a) are rewritten as ,94 = -Co, 
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°Q5 "}- (015 : - - e l ,  ~4 + 2(04 + (042 = ~12, 04 27 3(0 4 + 3(042 + (0423 = g123, a n d  s imi -  
l a r l y  for (16b)), solving these equations we get: 

04 = --g0,  

(04 = go - -  /~1, (17a )  

(042 = --go + 2gl + g12, 

(0423 = gO - -  3gl - -  3g12 -]- g123, 

and 

(_05 = gO + gl ,  
(17b) 

('0152 = --gO - -  2gl --/~12, 

(29523 = /30 "q- 3/31 + 3g12 + 8123 • 

If  the third-order weight factor (0123 is neglected, then the system of inequalities 
(16a) is satisfied for g's constants restricted by El -[-812 > 80/3, but then the last 
inequality of the system (16b) is not fulfilled. Its left-hand side provides 
i s ( l ,  1, 1) = - ~ 0 -  3~1- 3~12 > 0, this condition is never fulfilled for positive ~'s 
constants. In summay: a two-layer neural network, which simulates the summa- 
tion of Eq. (12) of three 1-digit binary numbers, must be at least of third-order, 
its lower-order versions are unable to simulate the considered problem. However, 
the necessity of third-order neural network is not a rule. The second-order 
two-layer neural network is often able to do correct classification without a 
necessity to apply a hidden-neuron approach even for patterns that are not 
linearly separable. This could be proved for example by successful simulation of 
logical function XOR [9]. 

4 Classification of  inductive and resonance sigma constants 
by the second-order neural networks 

The inductive and resonance sigma constants ax and an are very important 
parameters of physical organic chemistry [ 10] that characterize electronic proper- 
ties of functional groups. They offer a quantitative description of qualitative 
conceptions used in organic chemistry [18] when the influence of functional 
groups on a molecular skeleton (e.g. benzene ring) is considered. Quantum- 
chemical approaches [19] to understand the physical nature of these constants 
are not very successful. Probably, the main reason for this is the fact that 
theoretical models take into account the environmental effects in an adequate 
way. At the beginning of the eighties effective procedures for the quantification 
of inductive and resonance effects were developed by Gasteiger et al. [20-22]. 

Functional groups are formally considered as rooted molecular graphs [ 16] in 
which the vertices (atoms) and edges (bonds) are represented by additional 
symbols that properly specify their physical nature. The root of these molecular 
graphs corresponds to the atom immediately attached to the parent molecule. 
We shall restrict ourselves to univalent and electroneutral functional groups, i.e. 
they are attached to molecules by single bonds and are not viewed to be a holder 
of net positive or negative charge. We have used a modification of the approach 
initially suggested by Johnson et al. [14], which was successfully used by the 
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present authors for prediction of meta products of nitration [15] and 13C-NMR 
chemical shifts [23] in a series of monosubstituted benzenes by a neural network 
method. Recently, the same approach has been used [24] for the prediction and 
classification of a large set composed of 87 functional groups from the point of 
view of their experimental inductive and resonance sigma constants. The used 
feed-forward neural networks are three-layer, where the second (or middle) layer 
is composed of eight hidden neurons. 

The fourteen atom and bond descriptors of functional groups are specified 
in Table 1 [14, 15]. These descriptors characterize the univalent functional 
groups as inputs of neural networks. In particular, an entry of the descriptor is 
equal to a nonnegative integer counting the appearances of the given property in 
atoms of 1st (2nd, 3rd) level in the structural formula of the functional group, 
see Tables 1 and 2. The term "level" of atom is determined by the smallest 
number of bonds that are placed between an actual atom of substituent and the 
parental molecule. 

We have selected from Exner's review article [25] 37 substituents and their 
experimental inductive and resonance sigma constants, this set of functional 
groups is divided into a disjoint training set (31 functional groups) and a testing 
set (6 functional groups), see Table 3. The choice of functional groups was 
restricted to univalent and electroneutral groups. In the testing set there are given 
"representative" choices of different kinds of those substituents. 

Table 1. Descriptors of functional groups 

d i Meaning of the descriptor 

d~ 
d~ 

d~ 

a4 

d~ 
d~ 

d7 
d~ 
d9 

dl0 

d~2 

d13 
d~4 

First-level descriptors 

Number of lone electron pairs on the first level atom 

Sum of the main quantum numbers (each decreased by one) for the valence shell 
of the first level atom 

Number of hydrogen atoms attached to the first level atom 

Number of phenyl groups attached to the parental molecule 

Second-level descriptors 

Number of lone electron pairs on the second level atoms 

Sum of the main quantum numbers (each decreased by one) for the valence shell 
of the second level atoms 

Number of hydrogen atoms attached to the second level atoms 

Number of phenyl groups attached to the first level atoms 

Number of pi bonds that connect the first and second level atoms 

Third-level descriptors 

Number of lone electron pairs on the third level atoms 

Sum of the main quantum numbers (each decreased by one) for the valence shell 
of the third level atoms 

Number of hydrogen atoms attached to the 
third level atoms 

Number of phenyl groups attached to the second level atoms 

Number of pi bonds that connect the second and third level atoms 
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Table 2. Descriptors of  illustrative examples 
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- - X  x 1 x 2 x 3 x 4 x 5 x 6 x 7 x s x 9 x l o  X l l  x12  x13 x14  

- - N O 2  0 1 0 0 4 2 0 0 2 0 0 0 0 0 
- - C H 2 P h  0 1 2 0 0 0 0 1 0 0 0 0 0 0 
- -SO2Ph  0 2 0 0 4 2 0 1 2 0 0 0 0 0 
N H C O C H  3 1 1 1 0 0 1 0 0 0 2 2 3 0 1 

Table 3. Experimental and currently estimated sigma constants 

No. - - X  exp, est. 
o-t trR O'/ O'R 

Training set 
1 - - H  0.00 0.00 0.14 0.01 
2 - - C H  3 0.00 - 0 . 1 1  0.01 - 0 . 1 0  
3 - - C H 2 C H  3 0.00 - 0 . 1 0  0.01 - 0 . 1 0  
4 - - P h  0.12 - 0 . I 1  0.05 -0 .11  
5 - - C H 2 P h  0.03 - 0 . 1 2  0.03 - 0 . 1 2  
6 - - C H 2 C N  0.20 - 0 . 0 9  0.20 - 0 . 1 0  
7 - - C H  2 OH 0.11 - 0.05 0.08 - 0.03 
8 --CH2C1 0.17 0.00 0.18 -0 .01  
9 - -CF3 0.40 0.08 0.40 0.08 

10 --CC13 0.36 0.00 0.36 0.00 
11 - - C N  0.57 0.13 0.53 0.09 
12 - - C H O  0.25 0.24 0.28 0.28 
13 - - C O C H  3 0.30 0.16 0.29 0.18 
14 - - C O N H  e 0.28 0.14 0.30 0.12 
15 - - N H 2  0.17 - 0 . 4 8  0.10 - 0 . 4 9  
16 - -N(CH3)  2 0.17 - 0 . 5 2  0.17 - 0 . 5 3  
17 - - N H C O C H  3 0.28 - 0 . 2 5  0.28 - 0 . 2 4  
18 - - N H C O P h  0.28 - 0 . 2 5  0.28 - 0 . 2 6  
19 - - N O z  0.67 0.15 0.66 0.15 
20 - - O H  0.24 - 0 . 6 2  0.28 - 0 . 5 4  
21 - -OCH3  0.30 - 0 . 4 5  0.31 - 0 . 4 5  
22 - - O C F  3 0.55 - 0 . 1 9  0.55 - 0 . 1 9  
23 - - S H  0.27 - 0 . 1 9  0.31 - 0 . 2 4  
24 - - S C O C H  3 0.39 0.08 0.39 0.10 
25 - - S C N  0.56 - 0 . 9 0  0.56 - 0 . 8 7  
26 - - S O C H  3 0.49 0.00 0.49 0.00 
27 - - F  0.54 - 0 . 3 4  0.51 -0 .31  
28 --C1 0.47 - 0 . 2 3  0.46 - 0 . 2 4  
29 - -N~--NPh 0.19 0.06 0.20 0.07 
30 - - O P h  0.40 - 0 . 3 4  0.39 - 0 . 3 5  
31 - - O C O C H  3 0.38 - 0 . 2 3  0.38 - 0 . 2 6  

Testing set 

1 - - B r  0.47 --0.19 0.40 - 0 . 1 7  
2 - - I  0.40 --0.16 0.33 --0.10 
3 - - C H ( C H 3 )  2 0.00 - 0 . 1 2  0.05 - 0 . 2 7  
4 - - C O P h  0.27 0.19 0.31 0.23 
5 - - C O O H  0.30 0.14 0.39 0.06 
6 - - S C H  3 0.30 - 0 . 2 0  0.34 - 0 . 3 1  
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The used second-order neural network is composed of two layers. The 
juxtaposed input and output layers are fully connected by oriented connections. 
The input layer is composed of fourteen neurons that correspond to descriptors 
(input activities). The output layer contains two neurons, whose activities 
correspond to inductive and resonance sigma constants. Since the sigma con- 
stants are all between - 1  and 1, the constants A and B from transfer func- 
tion Eq. (2) can reasonably be fixed as A = -  1 and B = 1. The adaptation 
process based on Eqs. (6) and (8) is carried out for 2 = 0.01 and # = 0.8, then 
after 1000 iterations we have achieved E = 0.01 and [grad E[ = 10 -4, where E is 
determined by Eq. (8a-b).  The sigma constants for substituents from the 
training as well as the testing set as predicted by adapted neural network are 
given in Table 3. 

5 Discussion 

We have demonstrated that the higher-order neural networks are able to classify 
input patterns correctly without a necessity to use the hidden-neuron approach. 
This fact might be of great importance for the simple interpretation and better 
understanding of results produced by higher-order neural networks. Their appli- 
cations to chemically interesting problems, represented in this communication by 
classification of inductive and resonance sigma constants, seem to be very 
promising for the construction of algorithms, which classify and predict chemical 
reactivity of organic molecules from their simple structural descriptors. These 
descriptors offer a simple possibility of how to code the molecular structural 
formulae in way useful for the prediction of chemical reactivity by a neural 
network. It seems that such an approach of coding molecular structure combined 
with the higher-code neural networks gives simple algorithmic tools for the 
construction of computer systems. Those systems seem able to predict qualita- 
tively (or semiquantitatively) the properties of molecular systems - in particular 
those properties that are strictly localized on the fragment (subgraph) of whole 
structural formula. 

Neural networks are analytically very complicated algorithmic tools, there- 
fore their properties according to their design, used transfer and objective 
functions are usually derived from numerical experiments. The number of 
"parameters" which should be fitted is rather too large to carry out exhaust- 
ing search for best choice. These unfortunate facts generally lead authors in 
chemical applications [4] to make choice of design of neural networks according 
to their experience and intuition rather than by exact approaches. Numerical 
problems connected with neural network applications in chemistry, especially 
in structure-property relationships, have been recently studied by Maggiora et 
al. [261. 
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